§2. Bất phương trình và hệ bất phương trình một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
đấng ys

tìm m để hệ pt có nghiệm

\(\left\{{}\begin{matrix}\sqrt{1+x}+\sqrt{y-2}=\sqrt{m}\\\sqrt{1+y}+\sqrt{x-2}=\sqrt{m}\end{matrix}\right.\)

Akai Haruma
26 tháng 8 2021 lúc 11:48

Lời giải: ĐK: $x,y\geq 2$
HPT \(\Rightarrow \sqrt{x+1}-\sqrt{y+1}+(\sqrt{y-2}-\sqrt{x-2})=0\)

\(\Leftrightarrow (x-y).\left[\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{y-2}+\sqrt{x-2}}\right]=0\)

\(\Leftrightarrow x-y=0\) (do dễ thấy biểu thức trong ngoặc vuông luôn âm)

\(\Leftrightarrow x=y\)

Khi đó: $\sqrt{x+1}+\sqrt{x-2}=\sqrt{m}$
$\Leftrightarrow 2x-1+2\sqrt{(x+1)(x-2)}=m$

Để hpt có nghiệm thì pt trên có nghiệm 

$\Leftrightarrow m\geq \min (2x-1+2\sqrt{(x+1)(x-2)})$

$\Leftrightarrow m\geq 2.2-1+2.0=3$

Vậy $m\geq 3$


Các câu hỏi tương tự
Miner Đức
Xem chi tiết
poppy Trang
Xem chi tiết
Bùi Nam Khánh
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Minh Chuẩn
Xem chi tiết
Hoaa
Xem chi tiết
Phạm Thị Thúy Giang
Xem chi tiết
Hoàng
Xem chi tiết
Jack Viet
Xem chi tiết