Đặt \(cotx=t\Rightarrow\) khi x chạy từ \(\dfrac{\pi}{4}\rightarrow\dfrac{\pi}{2}\) thì \(t\) chạy từ 1 về 0
Do đó, nếu \(f\left(x\right)\) đồng biến thì \(f\left(t\right)=\dfrac{2t+1}{t+m}\) nghịch biến trên \(\left(0;1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\\left[{}\begin{matrix}-m< 0\\-m>1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \dfrac{1}{2}\\m< -1\end{matrix}\right.\)