Dạng này lâu quá quên cách làm rồi, thử vài cách xem cái nào tối ưu:
Sử dụng tam thức bậc 2:
Hàm xác định trên R khi:
\(2sin^2x-m.sinx+1>0;\forall x\in R\)
Đặt \(sinx=t\in\left[-1;1\right]\)
\(\Rightarrow f\left(t\right)=2t^2-m.t+1>0;\forall t\in\left[-1;1\right]\)
\(\Delta=m^2-8\)
TH1: \(\Delta< 0\Rightarrow-2\sqrt{2}< m< 2\sqrt{2}\)
Khi đó \(f\left(t\right)>0;\forall t\in R\)
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\dfrac{b}{2a}=\dfrac{m}{4}\notin\left[-1;1\right]\end{matrix}\right.\) \(\Rightarrow\) ko có m thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta>0\\t_1< t_2< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(-1\right)=m+3>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}< -1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
TH4: \(\left\{{}\begin{matrix}\Delta>0\\1< t_1< t_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(1\right)=3-m>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}>1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Vậy \(-2\sqrt{2}< m< 2\sqrt{2}\)
- Sử dụng hẳng đẳng thức:
\(2sin^2x-m.sinx+1>0\)
\(\Leftrightarrow16sin^2x-8m.sinx+8>0\)
\(\Leftrightarrow\left(4sinx-m\right)^2-m^2+8>0\)
\(\Leftrightarrow\left(4sinx-m\right)^2>m^2-8\) (1)
TH1: \(m^2-8< 0\Rightarrow\) BPT luôn đúng
TH2: \(m^2-8\ge0\), khi đó (1) tương đương:
\(\left[{}\begin{matrix}4sinx-m>\sqrt{m^2-8}\\4sinx-m< -\sqrt{m^2-8}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4sinx>m+\sqrt{m^2-8}\\4sinx< m-\sqrt{m^2-8}\end{matrix}\right.\)
Do \(sinx\in\left[-1;1\right]\) nên điều này đúng vói mọi x khi và chỉ khi:
\(\left[{}\begin{matrix}-4>m+\sqrt{m^2-8}\\4< m-\sqrt{m^2-8}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-1>\dfrac{m+\sqrt{m^2-8}}{4}\\1< \dfrac{m-\sqrt{m^2-8}}{4}\end{matrix}\right.\)(2)
Giải 2 cái này ra là được.
À, đến đây phát hiện ra 1 điều, thực chất \(\dfrac{m\pm\sqrt{m^2-8}}{4}\) chính là 2 nghiệm \(t_1;t_2\) của pt
\(2t^2-mt+1=0\), và 2 BPT (2) kia cũng chính là \(\left[{}\begin{matrix}t_1< t_2< -1\\1< t_1< t_2\end{matrix}\right.\) của cách 1
Vậy về cơ bản 2 cách này giống nhau về phần lõi, chỉ khác về cách trình bày
Sử dụng quy tắc cô lập m:
\(2sin^2x-m.sinx+1>0\Rightarrow2t^2-mt+1>0\) với \(t\in\left[-1;1\right]\)
- TH1: xét \(t\in\left(-1;0\right)\)
\(2t^2+1>mt\Rightarrow\dfrac{2t^2+1}{t}< m\) (do \(t< 0\) nên chia vế đảo dấu)
\(\Rightarrow m>\max\limits_{\left(-1;0\right)}\dfrac{2t^2+1}{t}\)
Có \(\dfrac{2t^2+1}{t}=2t+\dfrac{1}{t}=-\left(-2t+\left(-\dfrac{1}{t}\right)\right)\le-2\sqrt{\left(-2t\right).\left(-\dfrac{1}{t}\right)}=-2\sqrt{2}\)
\(\Rightarrow m>-2\sqrt{2}\)
TH2: xét \(t\in\left(0;1\right)\) (với t=0 hàm hiển nhiên xác định với mọi m)
\(2t^2+1>mt\Rightarrow\dfrac{2t^2+1}{t}>m\)
\(\Rightarrow m< \min\limits_{\left(0;1\right)}\dfrac{2t^2+1}{t}\)
Do \(\dfrac{2t^2+1}{t}=2t+\dfrac{1}{t}\ge2\sqrt{\dfrac{2t}{t}}=2\sqrt{2}\) (dấu = xảy ra với \(t\in\left(0;1\right)\) thỏa mãn)
\(\Rightarrow m< 2\sqrt{2}\)
Kết hợp: \(-2\sqrt{2}< m< 2\sqrt{2}\)