\(f'\left(x\right)=3x^2+6mx+3m^2-3\)
Để \(f\left(x\right)\) nghịch biến trên \(\left(1;2\right)\)
\(\Leftrightarrow f'\left(x\right)\le0\) ;\(\forall x\in\left(1;2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}f'\left(1\right)\le0\\f'\left(2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m^2+6m\le0\\3m^2+12m+9\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\le m\le0\\-3\le m\le-1\end{matrix}\right.\) \(\Rightarrow-2\le m\le-1\)