\(\Leftrightarrow f\left(x\right)=x^3+\left(m^2-4m\right)x^2+mx+m-4\) là hàm lẻ
Ta có:
\(f\left(-x\right)=-x^3+\left(m^2-4m\right)x^2-mx+m-4\)
Để hàm đã cho lẻ
\(\Leftrightarrow f\left(x\right)=-f\left(-x\right)\) với mọi x
\(\Leftrightarrow x^3+\left(m^2-4m\right)x^2+mx+m-4=x^3-\left(m^2-4m\right)x^2+mx-m+4\)
\(\Leftrightarrow2\left(m^2-4m\right)x^2+2m-8=0\) ; \(\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m=0\\2m-8=0\end{matrix}\right.\)
\(\Leftrightarrow m=4\)