\(a)\left(1+m\right)x^2-2mx+2m=0\\ \Delta=\left(2m\right)^2-4\left(1+m\right).2m\\ =4m^2-8m^2-8m\\ =-4m^2-8m\)
Để phương trình có nghiệm \(\Delta\ge0\)
\(-4m^2-8m\ge0\\ \Leftrightarrow-4m\left(m+2\right)\ge0\\ m\left(m+2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow-2\le m\le0\)
\(b)\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6=0\\ \Delta=\left(2m-3\right)^2-4\left(m-2\right)\left(5m-6\right)\\ =4m^2-12m+9-20m^2+64m-48\\ =-16m^2+52m-39\)
Để phương trình có nghiệm thì \(\Delta\ge0\)
\(-16m^2+52m-39\ge0\\ \Leftrightarrow m\in\left(\dfrac{13\pm\sqrt{13}}{8}\right)\)
Vậy...
\(c)\left(3-m\right)x^2-2\left(m+3\right)x+m+2=0\\ \Delta=\left[2\left(m+3\right)\right]^2-4\left(3-m\right)\left(m+2\right)\\ =4m^2+24m+36-12m-24+4m^2+8m\\ =8m^2+20m+12\)
Để phương trình có nghiệm thì \(\Delta\ge0\)
\(8m^2+20m+12\ge0\\ \Leftrightarrow2m^2+5m+3\ge0\\ \Leftrightarrow\left(2m+3\right)\left(m+1\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\in[-1;+\infty)\\m\in(-\infty;-\dfrac{3}{2}]\end{matrix}\right.\)