Lời giải:
Trước tiên, cần tìm đk của $m$ để 2 PT có nghiệm.
\(\left\{\begin{matrix} \Delta_1=(3m+2)^2-8.12>0\\ \Delta_2=(9m-2)^2-576>0\end{matrix}\right.(*)\)
Gọi nghiệm chung của 2 pt trên là $a$
Ta có: \(\left\{\begin{matrix} 2a^2-(3m+2)a+12=0\\ 4a^2-(9m-2)a+36=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4a^2-2(3m+2)a+24=0\\ 4a^2-(9m-2)a+36=0\end{matrix}\right.\)
\(\Rightarrow a(m-2)=4\)
Để $a$ tồn tại thì $m-2\neq 0$. Khi đó $a=\frac{4}{m-2}$
Thế vào PT(1):
\(2(\frac{4}{m-2})^2-(3m+2).\frac{4}{m-2}+12=0\)
Giải PT trên ta thu được $m=3$ (thỏa mãn $(*)$)
Vậy.....