Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Thị Phương Anh

Tim gtri nho nhat cua

A= x^2 - 5x + 12

B= 2x^2 -14x + 5

Trần Quốc Lộc
23 tháng 10 2017 lúc 11:11

\(A=x^2-5x+12\\ A=x^2-5x+\dfrac{25}{4}+\dfrac{23}{4}\\ A=\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{23}{4}\\ A=\left[x^2-2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{23}{4}\\ A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\\ Do\text{ }\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{5}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{5}{2}=0\\ \Leftrightarrow x=\dfrac{5}{2}\\ \text{Vậy }A_{\left(Min\right)}=\dfrac{23}{4}\text{ }khi\text{ }x=\dfrac{5}{2}\)

\(B=2x^2-14x+5\\ \\ A=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ A=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ A=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ A=\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ Do\text{ }\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\\ \text{Vậy }B_{\left(Min\right)}=-\dfrac{39}{2}\text{ }khi\text{ }x=\dfrac{7}{2}\)

Trần Quốc Lộc
23 tháng 10 2017 lúc 11:18

\(B=2x^2-14x+5\\ B=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ B=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ B=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ B=2\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ \)

Do \(\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\)

Dấu \("="\) xảy ra khi :

\(\left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\)

Vậy \(B_{\left(Min\right)}=-\dfrac{39}{2}\) khi \(x=\dfrac{7}{2}\)

Do máy bị lỗi nên câu B bị trục trặc.

Mk xin lỗi.


Các câu hỏi tương tự
Hakai Nguyen
Xem chi tiết
Huỳnh bảo Yến Nhi
Xem chi tiết
Nguyễn Hồng NHung
Xem chi tiết
Biết Rồi Hỏi Chi
Xem chi tiết
Phạm Vũ Hùng Thơ
Xem chi tiết
Lưu Hoàng Thiên Chương
Xem chi tiết
Nguyen Duc Thong
Xem chi tiết
Lê Phú Toàn
Xem chi tiết
Hà Linh
Xem chi tiết