H=2x2+y2+2xy+6x+4y+9
= (x2+2xy+y2)+(4x+4y)+4+(x2+2x+1)+4
= (x+y)2+4(x+y)+4 +(x+1)2+4
=(x+y+2)2 +(x+1)2+4
=> MinH =4 khi x=-1; y=-1
H=2x2+y2+2xy+6x+4y+9
= (x2+2xy+y2)+(4x+4y)+4+(x2+2x+1)+4
= [(x+y)2+4(x+y)+4] +(x+1)2+4
=(x+y+2)2 +(x+1)2+4
do (x+y+2)2≥0 ∀x;y
(x+1)2 ≥0 ∀x
=> (x+y+2)2 +(x+1)2+4 ≥4
=> min H= 4 khi x=-1;y=-1
H=2x2+y2+2xy+6x+4y+9
= (x2+2xy+y2)+(4x+4y)+4+(x2+2x+1)+4
= [(x+y)2+4(x+y)+4] +(x+1)2+4
=(x+y+2)2 +(x+1)2+4
Ta có: (x+y+2)2≥0 ∀x;y
(x+1)2 ≥0 ∀x
=> (x+y+2)2 +(x+1)2+4 ≥4
Vậy GTNN của H= 4 khi x=-1;y=-1