1. Tìm GTnn, Gtln cua bt
\(A=\left|x-\sqrt{2}\right|+\left|y-1\right|\) với \(\left|x\right|+\left|y\right|=5\)
2. Tìm gtnn của \(A=x^4+y^4+z^4\)
biết rằng \(xy+yz+zx=1\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
Tìm GTLN của biếu thức
P= x\(\sqrt{\dfrac{\left(1+y^2\right).\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right).\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right).\left(1+y^2\right)}{1+z^2}}\)
Timf GTNN,GTLN cua \(A=x^2+y^2\)
biet rang: \(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)
Cho x,y,z là các số dương thỏa mãn xyz=1
Tìm gtln của \(A=\frac{1}{\sqrt{\left(2x+1\right)\left(y+2\right)}}+\frac{1}{\sqrt{\left(2y+1\right)\left(z+2\right)}}+\frac{1}{\sqrt{\left(2z+1\right)\left(x+2\right)}}\)
1) giải hệ phương trình \(\left\{{}\begin{matrix}\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\left(1\right)\\x^2+8x+5-2\left(3y+2\right)\sqrt{4x-3y}=2\sqrt{2x^2+5x+2}\left(2\right)\end{matrix}\right.\)
2) cho a,b,c là các số thực dương thỏa mãn ab+2bc+2ca=7. tim GTNN của biểu thức \(Q=\frac{11a+11b+12c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
giải HPT
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(2x-y\right)\left(y+15\right)=2xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{4x}-3y+4z^2=-2\\\sqrt{3x}+2y-3z^2=1\\-3\sqrt{x}+y+2z^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3=30\\x^2y+x\left(1+y+y^2\right)+y=11\end{matrix}\right.\)
câu 1 :
Cho 3 số x,y,z thỏa mãn 0<x,y,z≤1 và x+y+z=2
Tìm GTNN của \(A=\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
câu 2 :
Tìm giá trị lớn nhất của A
Với a,b,c , d là các số dương và \(a+b+c+d\le1\)
\(A=\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)