Đặt \(A=x^2-xy+y^2-3x-3y+2029\)
\(\Leftrightarrow2A=2x^2-2xy+2y^2-6x-6y+4058\)
\(\Leftrightarrow2A=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+4040\)
\(\Leftrightarrow2A=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+4040\ge4040\forall x;y\)
\(\Leftrightarrow A\ge\dfrac{4040}{2}=2020\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-3=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=3\end{matrix}\right.\) \(\Leftrightarrow x=y=3\)
Vậy GTNN của b/t trên là : \(2020\Leftrightarrow x=y=3\)