a,cmr \(\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\right)=\sqrt{b}-\sqrt{a}\)
b, A=\((\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{a+\sqrt{a}}):\dfrac{\sqrt{a}+1}{a}\)
1.tìm đk của A để A có ngĩa
2.rút gọn A
3.tìm GTNN của A
Cho a,b,c >0 thỏa a+b+c \(\ge9\)
Tìm Min:
\(P=2\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}+\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)
Cho \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\) . Chứng minh \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}=\dfrac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
1. Cho biểu thức:
A = \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1.\)
a) Rút gọn A.
b) Tìm x để A = 2.
c) Tìm GTNN của A.
2. Tìm GTNN của B = \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}.\)
1. tính
a,\(\sqrt{\dfrac{1,44}{3,61}}\) ; b, \(\sqrt{\dfrac{0,25}{9}}\) ; c, \(\sqrt{1\dfrac{13}{36}}.\sqrt{3\dfrac{13}{36}}\)
d,\(\sqrt{\dfrac{1}{121}.3\dfrac{6}{25}}\) ; e,\(\sqrt{1\dfrac{13}{36}.2\dfrac{2}{49}.2\dfrac{7}{9}}\) ; g,
2. Tính
a, \(\dfrac{\sqrt{245}}{\sqrt{5}}\) ; b, \(\dfrac{\sqrt{3}}{\sqrt{75}}\) ; c, \(\dfrac{\sqrt{10,8}}{\sqrt{0,3}}\) ; d, \(\dfrac{\sqrt{6,5}}{\sqrt{58,5}}\)
3. Tính.
a, \(\sqrt{\dfrac{61^2-60^2}{81}}\) ; b, \(\sqrt{\dfrac{74^2-24^2}{121}}\)
4. Tìm số x không âm, biết:
a, 9 - 4 \(\sqrt{x}=1\) ; b, \(\sqrt{\dfrac{x}{5}}=4\) c, \(\sqrt{7x}< 9\)
a, \(A=\left(\sqrt{2}+1\right)[\left(\sqrt{2}\right)^2+1][(\sqrt{2})^4+1][\left(\sqrt{2}\right)^8+1][1\left(\sqrt{2}\right)^{16}+1]\)
b, \(B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+1\sqrt{2020}}\)
c,\(C=^3\sqrt[]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\)
1. Cho A = \(\left(\dfrac{\sqrt{a}}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a) Rút gọn A.
b) Tìm a để A = 4; A\(>-6\).
c) Tính A khi \(a^2-3=0\).
2. Cho B = \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\).
a) Rút gọn B.
b) Tính B khi a = \(\dfrac{\sqrt{6}}{2+\sqrt{6}}\).
c) Tìm a để \(\sqrt{B}>B\)
tìm tất cả các số nguyên dương a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn
\(\sqrt{\dfrac{19}{A+B-C}}+\sqrt{\dfrac{5}{B+C-A}}+\sqrt{\dfrac{79}{B+C-A}}\in N\ne1\)
1) Cho a,b,c > 0 ; a+b+c = 1 .Tìm GTLN của :
A = \(\dfrac{\sqrt{ab}}{\sqrt{c+ab}}+\dfrac{\sqrt{bc}}{\sqrt{a+bc}}+\dfrac{\sqrt{ac}}{\sqrt{b+ac}}\)