\(D=x+\sqrt{x}=\left(\sqrt{x}\right)^2+2\sqrt{x}\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\)
\(=\left(\sqrt{x}+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
mà để \(\sqrt{x}\) được xác định thì \(x\ge0\) Vậy Minx = 0
tức Min D = 0 \(\Leftrightarrow x=0\)
\(C=\sqrt{x^2-2x+4}+1=\sqrt{x^2-2x+1+3}+1\)
\(=\sqrt{\left(x-1\right)^2+3}+1\)
(mà \(\left(x-1\right)^2\ge0\forall x\) nên \(\left(x-1\right)^2\) nhỏ nhất khi x=1)
Vậy MinC = \(1+\sqrt{3}\Leftrightarrow x=1\)