\(B=\frac{1}{2\sqrt{x}-x-3}\)
Điều kiện: \(x\ge0\).
Ta có : \(2\sqrt{x}-x-3=-\left(x-2\sqrt{x}+3\right)=-\left[\left(x-2\sqrt{x}+1\right)+2\right]=-\left[\left(\sqrt{x}-1\right)^2\right]\)
Do đó : \(B=\frac{1}{2\sqrt{x}-x-3}=\frac{1}{\left(\sqrt{x}-1\right)^2+2}\)
Vì \(\left(\sqrt{x}-1\right)^2+2\ge2\) với mọi \(x\ge0\)
Suy ra \(B\ge-\frac{1}{2}\)
Vậy min B = \(-\frac{1}{2}\) <=> \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(TM\right)\)