ĐKXĐ: \(x\ge0;x\ne9\)
1/ \(P=\frac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{x\sqrt{x}+8\sqrt{x}-3x-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{\sqrt{x}\left(x+8\right)-3\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{x+8}{\sqrt{x}+1}\)
b/ \(\sqrt{x}=\sqrt{3^2-6\sqrt{5}+5}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
\(\Rightarrow P=\frac{14-6\sqrt{5}+8}{3-\sqrt{5}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}=\frac{58-2\sqrt{5}}{11}\)