Sửa đề: \(B=\dfrac{x^2+1}{x}=x+\dfrac{1}{x}\ge2\sqrt{x\cdot\dfrac{1}{x}}=2\)
Dấu bằng xảy ra \(\Leftrightarrow x^2=1\)
Mà \(x>0\)
\(\Rightarrow x=1\)
Vậy \(Min_B=2\) khi \(x=1\)
Sửa đề: \(B=\dfrac{x^2+1}{x}=x+\dfrac{1}{x}\ge2\sqrt{x\cdot\dfrac{1}{x}}=2\)
Dấu bằng xảy ra \(\Leftrightarrow x^2=1\)
Mà \(x>0\)
\(\Rightarrow x=1\)
Vậy \(Min_B=2\) khi \(x=1\)
Tìm GTNN của: \(B=\dfrac{x+1}{x}\) với \(0< x\le\dfrac{1}{4}\)
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}=\sqrt{ab}\). Áp dụng tìm GTNN của B=\(\dfrac{x+1}{x}\) với:
TH1: x>0
TH2: \(0< x\le\dfrac{1}{4}\)
TH3: \(x\ge2\)
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}\ge\sqrt{ab}\). Áp dụng tìm GTNN của \(B=\dfrac{x+1}{x}\) với:
TH1: x>0
TH2: \(0< x\le\dfrac{1}{4}\)
TH3: \(x\ge2\)
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}=\sqrt{ab}\). Áp dụng tìm GTNN của \(A=\dfrac{1}{x}+\dfrac{1}{y}\) biết x+y=1 và x, y dương
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}\ge\sqrt{ab}\). Áp dụng tìm GTNN của: \(A=\dfrac{1}{x}+\dfrac{1}{y}\) biết x+y=1 và x, y dương
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}\ge\sqrt{ab}\). Áp dụng tìm GTNN của \(A=\dfrac{1}{x}+\dfrac{1}{y}\) biết x+y=1 và x, y dương
Tìm GTNN của: \(A=\dfrac{\left(x+4\right).\left(x+9\right)}{x}\) với x>0
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( với a, b dương), tìm GTNN của biểu thức: \(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\) với x, y là 2 số dương và x+y=1