\(2A=\dfrac{2x^2+2y^2}{x^2+2xy+y^2}=1+\dfrac{x^2-2xy+y^2}{\left(x+y\right)^2}=1+\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}\ge1\text{ nên: }A\ge\dfrac{1}{2}\text{ hay: }A_{min}=\dfrac{1}{2}\text{ Dấu }"="\text{ xảy ra khi: }x=y\text{ khác 0}\)
\(2A=\dfrac{2x^2+2y^2}{x^2+2xy+y^2}=1+\dfrac{x^2-2xy+y^2}{\left(x+y\right)^2}=1+\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}\ge1\text{ nên: }A\ge\dfrac{1}{2}\text{ hay: }A_{min}=\dfrac{1}{2}\text{ Dấu }"="\text{ xảy ra khi: }x=y\text{ khác 0}\)
Cho x , y , z > 0 và x + y + z ≤ 3 .
Tìm GTNN của C = \(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}\)
Tìm Min của:
\(A=\dfrac{1}{x^2+y^2+1}+\dfrac{3}{2xy}\) với x: y là các số thực dương.
Tìm GTNN của A=\(\dfrac{x^2}{y+z+t}\)+\(\dfrac{y^2}{x+z+t}\)+\(\dfrac{z^2}{x+y+t}\)+\(\dfrac{t^2}{x+y+z}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( với a, b dương), tìm GTNN của biểu thức: \(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\) với x, y là 2 số dương và x+y=1
Cho: \(D=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\) và x+y=2. Tìm GTNN của D
Tìm GTNN của: \(C=\left(x^2+\dfrac{1}{y^2}\right).\left(y^2+\dfrac{1}{x^2}\right)\)
Cho x và y là hai số dương thỏa mãn: x+y=2. Tìm GTNN của biểu thức: Q=\(\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y