\(A=x^2-3x=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
\(\Rightarrow A_{min}=-\frac{9}{4}\) khi \(x=\frac{3}{2}\)
\(A=x^2-3x=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
\(\Rightarrow A_{min}=-\frac{9}{4}\) khi \(x=\frac{3}{2}\)
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
Tìm GTNN của P = |x+3| + |x-2| + |x-5|
Tìm GTNN của P = |x+3| + |x-2| + |x-5|
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
Tìm GTNN của:
\(P=\dfrac{x^2-2x+3}{x^2}\left(x\ne0\right)\)
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
d) D = (2 + x)( x + 4) - ( x - 1)( x + 3 )2
Tìm GTNN của biểu thức B= (x-3)2 + (x+1)2
a)Tìm GTNN của \(\left(x+1\right)^2+2\left(x+1\right)^4\)
b)Tìm GTNN của \(\left(x-1\right)^4+\left(x+5\right)^4-123\)
tìm GTNN của A=\(\dfrac{x^2-2x+1975}{x^2}\)
Tìm GTNN của: \(A=\dfrac{\left(x+4\right).\left(x+9\right)}{x}\) với x>0