Giải các phương trình sau:
a)\(\left\{{}\begin{matrix}x+y-xy=8\\y+x+yz=15\\z+x+xz=35\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^3+\frac{1}{3}y=x^2+x-\frac{4}{3}\\y^3+\frac{1}{4}z=y^2+y-\frac{5}{4}\\z^3+\frac{1}{5}x=z^2+z-\frac{6}{5}\end{matrix}\right.\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
1CMR: x2+y2+8\(\ge\) xy+2x+2y
2 Cho a+b+c=6 . Cmr: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{3}{4}\)
3 Cho x+y+z+xy+yz+zx=6. Cmr: x2+y2+z2 \(\ge3\)
Cho x, y, z khác 0, x+y khác z và y+z khác x
thoả mãn \(\frac{x^2+y^2-z^2}{2xy}-\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2zx}\) =1. Chứng minh x+y+z=0
1)tính giá trị nhỏ nhất của B=3*|x-1|+4-3x
2)Chứng minh rằng :\(a^4+b^4+c^4+d^4\ge4abcd\)
3)Cho 2 số a và b thỏa mản a\(\ge\)1 ;b\(\ge\)1.Chứng minh :\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
4)cho x,y,z đôi một khác nhau và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
tính giá trị của biểu thức \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
5)cho phương trình ẩn x sau : (2x=m)(x-1)-2x2+mx+m-2=0.tìm các giá trị của m để phương trình có nghiệm là một số không âm
mình đang cần gấp ,thứ 7 kiểm tra học kì II rồi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tính
a) \(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)\)
b) \(\frac{x^3-3x^2+2x}{3x^2-4x+1}.\left(\frac{x-1}{x}-\frac{2x-6}{x-1}+\frac{x+1}{x-2}\right)\)
c) \(\frac{3x-3y}{2x^2-2xy+2y^2}:\frac{6x^2-12xy+6y^2}{5x^3+5y^3}:\frac{5x}{x-y}\)
Cho các số x, y, z khác 0 thỏa mãn đồng thời
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) và \(\frac{2}{xy}-\frac{1}{z^2}=4\)
Tính giá trị biểu thức: \(P=\left(x+2y+z\right)^{2020}\)
Cho biểu thức A= \(\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
a) Rút gọn A
b) Tính giá trị của A khi |2x-5|=3
c) Tìm x để A=4
d) Tìm x để A<2
e) Tìm x ∈ Z để A ∈ Z
f) Tìm x ∈ Z đề A ∈ N
g) Với x>1. Chứng minh rằng: A>1 ∀x
GIÚP MIK VỚI
Bài 2: Tìm giá trị lớn nhất:
a) A = 12x - 4x2 - 5
b)B = \(\frac{3}{4x^2-4x+5}\)
c) C = 10x - 4x2 - 23
d) D = \(\frac{-2x^2+4x-3}{x^2-2x+3}\)
Bài 3: Tìm giá trị nhỏ nhất:
a) A = (x2 - 9)4 + |y - 2| - 1
b) B = x2 + 2y2 - 2xy - 4t + 5
c) C = \(\frac{x^2+x+1}{\left(x+1\right)^2}\)
Bài 4: Cho x ≥ 1. Tìm GTNN của A = 2018x + \(\frac{1}{2x}\)
Bài 5: Cho x,y > 0, x + y = 1. Tìm GTNN của P = \(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
Bài 6: Cho x > 0, y > 0 thỏa mãn x + y ≤ 1. Tìm GTNN của P = \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
giải phương trình
a/ x^4-3x^3+6x^2-3x+1=0
b/ (4x+3)^3+(5-7x)^3+(3x-8)^3=0
c/ (x-2)^4 +(x-3)^4=1
d/ x^2 + \(\frac{1}{x^2}\)+ y^2 + \(\frac{1}{y^2}\)=4