\(A=2x^2+5y^2-2xy+2y+2x\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4xy+4y^2\right)-1\)
\(=\left(x+y+1\right)^2+\left(x-2y\right)^2-1\)
Ta thấy :(x + y +1)2 ≥ 0 ∀ x,y
(x - 2y)2 ≥ 0 ∀ x,y
⇒ (x + y +1)2 +(x - 2y)2 ≥ 0 ∀ x,y
⇔(x + y +1)2 +(x - 2y)2 -1 ≥ -1 ∀ x,y
⇔ A ≥ -1 ∀ x,y
Vậy GTNN của A là -1 \(\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-1}{3}\end{matrix}\right.\)