1. \(A=2x^2-6x-2xy+y^2+10\)
\(\Leftrightarrow A=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+1\)
\(\Leftrightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\) ; \(\left(x-3\right)^2\ge0\)\(\forall x;y\)
\(\Rightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=3\)
Vậy minA = 1 \(\Leftrightarrow x=y=3\)
2. \(A=5+2xy+14y-x^2-5y^2-2x\)
\(\Leftrightarrow A=-\left(x^2-2xy+y^2+2x-2y+1\right)-\left(4y^2-12y+9\right)+15\)
\(\Leftrightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)
Vì \(\left\{{}\begin{matrix}\left(x-y+1\right)^2\ge0\\\left(2y-3\right)^2\ge0\end{matrix}\right.\)\(\forall x;y\)
\(\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(2y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
Vậy maxA = 15 \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
1. A=2x2−6x−2xy+y2+10A=2x2−6x−2xy+y2+10
⇔A=(x2−2xy+y2)+(x2−6x+9)+1⇔A=(x2−2xy+y2)+(x2−6x+9)+1
⇔A=(x−y)2+(x−3)2+1⇔A=(x−y)2+(x−3)2+1
Vì (x−y)2≥0(x−y)2≥0 ; (x−3)2≥0(x−3)2≥0∀x;y∀x;y
⇒A=(x−y)2+(x−3)2+1≥1⇒A=(x−y)2+(x−3)2+1≥1
Dấu "=" xảy ra ⇔{(x−y)2=0(x−3)2=0⇔x=y=3⇔{(x−y)2=0(x−3)2=0⇔x=y=3
Vậy minA = 1 ⇔x=y=3⇔x=y=3
2. A=5+2xy+14y−x2−5y2−2xA=5+2xy+14y−x2−5y2−2x
⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15
⇔A=−(x−y+1)2−(2y−3)2+15⇔A=−(x−y+1)2−(2y−3)2+15
Vì {(x−y+1)2≥0(2y−3)2≥0{(x−y+1)2≥0(2y−3)2≥0∀x;y∀x;y
⇒A=−(x−y+1)2−(2y−3)2+15≤15⇒A=−(x−y+1)2−(2y−3)2+15≤15
Dấu "=" xảy ra ⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32
Vậy maxA = 15 ⇔{x=12y=32