1.
\(y=\sqrt{5-2\cos ^2x\sin ^2x}=\sqrt{5-\frac{1}{2}(2\cos x\sin x)^2}=\sqrt{5-\frac{1}{2}\sin ^22x}\)
Dễ thấy:
$\sin ^22x\geq 0\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\leq \sqrt{5}$
Vậy $y_{\max}=\sqrt{5}$
$\sin ^22x\leq 1\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\geq \sqrt{5-\frac{1}{2}}=\frac{3\sqrt{2}}{2}$
Vậy $y_{\min}=\frac{3\sqrt{2}}{2}$
2.
$y=1+\frac{1}{2}\sin 2x\cos 2x=1+\frac{1}{4}.2\sin 2x\cos 2x$
$=1+\frac{1}{4}\sin 4x$
Vì $-1\leq \sin 4x\leq 1$
$\Rightarrow \frac{5}{4}\leq 1+\frac{1}{4}\sin 4x\leq \frac{3}{4}$
$\Leftrightarrow \frac{5}{4}\leq y\leq \frac{3}{4}$
Vậy $y_{\max}=\frac{5}{4}; y_{\min}=\frac{3}{4}$
3.
$\sin x\geq -1\Rightarrow \sqrt{1+\sin x}\geq 0$
$\Rightarrow y\geq -3$
Vậy $y_{\min}=-3$
$\sin x\leq 1\Rightarrow \sqrt{1+\sin x}\leq \sqrt{2}$
$\Rightarrow y\leq \sqrt{2}-3$
Vậy $y_{\max}=\sqrt{2}-3$
4.
$\sin ^22x\geq 0\Rightarrow y=\sqrt{2+\sin ^22x}\geq \sqrt{2}$Vậy $y_{\min}=\sqrt{2}$$\sin ^22x\leq 1\Rightarrow y=\sqrt{2+\sin ^22x}\leq \sqrt{3}$Vậy $y_{\max}=\sqrt{3}$