tìm GTLN của \(Q=\sqrt{x}\left(\sqrt{x}-1\right)\)
20.\(E=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right)+\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
Cho M= \(\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) Rút gọn M
b) Tìm các giá trị của x để có \(\dfrac{5}{3}M\) = \(\sqrt{x}+4\)
Rút gọn
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}+2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}+1\right)}\)
bài 1 rút gọn :
\(\frac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
bài 3
cho B=\(\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}+4}\) , với x\(\ge\)0, x\(\ne\)16
a) rút gọn
b)tìm x để B\(\in\)Z
Bài 4 cho
C=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\left(\frac{\left(1-x\right)^2}{2}\right)\)
a) rút gọn c nếu x\(\ge\)0 , x\(\ne\)1
b) tìm x để C > 0
c) tìm GTLN của C
rút gọn
A=\(\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
lm nhanh giúp mk nhé
Cho x; y; z là các số dương nhỏ hơn 1 thỏa mãn x + y + z + 2\(\sqrt{xyz}\)= 1. Chứng minh rằng \(\sqrt{x\left(1-y\right)\left(1-z\right)}+\sqrt{y\left(1-x\right)\left(1-z\right)}+\sqrt{z\left(1-x\right)\left(1-y\right)}=1+\sqrt{xyz}\)
\(C=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\)
a) Rút gọn
b) Tính C với x=2-\(\sqrt{3}\); y=2+\(\sqrt{3}\)
Bải 1 :Rút gọn :
\(M=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\)\(\left(\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\right)\)
Bài 2 : Rút gọn :
\(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\)\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)