ĐKXĐ: \(-3\le x\le6\)
\(A=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)
\(\Rightarrow A_{min}=3\) khi \(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x+3\right)\left(6-x\right)}=3\sqrt{2}\)
\(\Rightarrow A_{max}=3\sqrt{2}\) khi \(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)