Đặt \(x+2004=t\left(t>2004\right),k=\frac{1}{x+2004}\Rightarrow x=t-2004\)
\(y=\frac{x}{\left(x+2004\right)^2}=\frac{t-2004}{t^2}=\frac{1}{t}-\frac{2004}{t^2}\)
\(\equiv f\left(t\right)=f\left(k\right)=k-2004k^2\)
$=-{\frac { \left( 4008\,k-1 \right) ^{2}}{8016}}+{\frac{1}{8016}} \leqq \frac{1}{8016}$
Đẳng thức xảy ra khi \(k=\frac{1}{4008}\Rightarrow x=2004\)
PS: Đặt màu mè thế thôi chứ xét hiệu $\frac{1}{8016}-y \geqq 0$ là xong ak:v