Ta có: \(-6x^2+12=-6\left(x^2-6x\right)\)
\(=-6\left(x^2-3x-3x\right)\)
\(=-6\left[\left(x^2-3x\right)-\left(3x-9\right)-9\right]\)
\(=-6\left[\left(x-3\right)^2+9\right]\)
\(=-6\left(x-3\right)^2-54\)
Vì \(-6\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-6\left(x-3\right)^2-54\le-54\forall x\)
Dấu \("="\) xảy ra khi \(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)
Vậy \(Max_{bt}=-54\) khi \(x=3.\)
Mk nghĩ tách như v, có sai thì xin lỗi nhé!