\(A=\left(2x^2-1\right)\left(2-x^2\right)=-2x^4+5x^2-2\)
\(=-2\left(x^2-\frac{5}{4}\right)^2+\frac{9}{8}\le\frac{9}{8}\)
\(A_{max}=\frac{9}{8}\) khi \(x^2=\frac{5}{4}\)
\(A=\left(2x^2-1\right)\left(2-x^2\right)\)
\(\Rightarrow2A=\left(2x^2-1\right)\left(4-2x^2\right)\)
Áp dụng BĐT Cauchy ta được
\(2A=\left(2x^2-1\right)\left(4-2x^2\right)\le\frac{\left(2x^2-1+4-2x^2\right)^2}{4}\)
\(\Rightarrow2A\le\frac{9}{4}\)
\(\Rightarrow A\le\frac{9}{8}\)
\(A_{max}=\frac{9}{8}\Leftrightarrow2x^2-1=4-2x^2\)
\(\Leftrightarrow x=\frac{\sqrt{5}}{2}\)