Sửa đề: \(A=xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Áp dụng BĐT AM-GM ta có:
\(xyz\le\left(\dfrac{x+y+z}{3}\right)^3=\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{27}\)
Và \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\left(\dfrac{x+y+y+z+z+x}{3}\right)^3\)
\(=\left(\dfrac{2\left(x+y+z\right)}{3}\right)^3=\left(\dfrac{2}{3}\right)^3=\dfrac{8}{27}\)
Nhân theo vế 2 BĐT trên ta có:
\(A\le\dfrac{1}{27}\cdot\dfrac{8}{27}=\dfrac{8}{729}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)