\(A=x-x^2=-x^2+x=-\left(x^2-x\right)\)
\(=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Ta có: \(-\left(x-\dfrac{1}{2}\right)^2\le0\)
\(\Rightarrow A=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu " = " khi \(-\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Vậy \(MAX_A=\dfrac{1}{4}\) khi \(x=\dfrac{1}{2}\)