Ta có \(\dfrac{2\sqrt{x}}{x+1}=\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}}\)
Áp dụng BĐT cosi, ta có:
\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\Leftrightarrow\dfrac{1}{\sqrt{x}+\dfrac{1}{\sqrt{x}}}\le\dfrac{1}{2}\\ \Leftrightarrow\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}}\le1\)
Vậy GTLN của \(\dfrac{2\sqrt{x}}{x+1}\) là 1. Dấu \("="\) xảy ra \(\Leftrightarrow\sqrt{x}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=1\)