\(\lim\limits_{x\rightarrow a}\dfrac{x^4-a^4}{x^2-a^2}=\lim\limits_{x\rightarrow a}\left(x^2+a^2\right)=2a^2\)
\(\lim\limits_{x\rightarrow a}\dfrac{x^4-a^4}{x^2-a^2}=\lim\limits_{x\rightarrow a}\left(x^2+a^2\right)=2a^2\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}=\dfrac{1}{2}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}=\dfrac{1}{3}\)
Tính các giới hạn sau:
a) \(\lim\limits_{x\rightarrow0^-}\dfrac{2\left|x\right|+x}{x^2-x}\)
b) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2-x}-\sqrt{x^2-1}\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow2}\dfrac{x^2-3x+2}{x-2}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow a^+}\dfrac{\sqrt{x}-a+\sqrt{x-a}}{\sqrt{x^2-a^2}}\)
b) \(\lim\limits_{x\rightarrow7}\dfrac{\sqrt{x+2}-\sqrt[3]{x+20}}{\sqrt[4]{x+9}-2}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x^2+5}-3}{x+2}\)
b, \(\lim\limits_{x\rightarrow2}\dfrac{x^2+x-6}{x^2-4}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow\infty}\dfrac{a_0x^m+a_1x^{m-1}+a_2x^{m-2}+...+a_m}{b_0x^n+b_1x^{n-1}+b_2x^{n-2}+...+b_n}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x-\sqrt{x^2-1}\right)^n+\left(x+\sqrt{x^2-1}\right)^n}{x^n}\)
tìm giới hạn \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+2x-1}-x}{3x-2}\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+7}-3}{x-1}\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}=\dfrac{1}{3}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)