ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-1\le x< 2m\\2m>m-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-1\le x< 2m\\m>-1\end{matrix}\right.\)
Để hàm số xác định trên \(\left(-1;3\right)\) thì:
\(\left\{{}\begin{matrix}m-1\le-1\\2m>3\\m>-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\m>\frac{3}{2}\\m>-1\end{matrix}\right.\) \(\Rightarrow m=\varnothing\)
Vậy ko tồn tại m thỏa mãn