\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
Ta có: \(2x+\frac{1}{x}\ge2\sqrt{2x+\frac{1}{x}}=2\sqrt{2}\)
\(\Rightarrow\left(2x+\frac{1}{x}\right)^2\ge8\)
\(\Rightarrow\left(2y+\frac{1}{y}\right)^2\ge8\)
Dấu \("="\) xảy ra \(\Leftrightarrow x=y=\pm\frac{1}{2}\)
Vậy \(P_{min}=16\Leftrightarrow x=y=\pm\frac{1}{2}\)