Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tìm giá trị nhỏ nhất của mỗi hàm số sau:

a) \(f\left(x\right)=x+\dfrac{4}{x}\) trên khoảng \(\left(0;+\infty\right)\).                  b) \(f\left(x\right)=x^3-12x+1\) trên khoảng \(\left(1;+\infty\right)\).

datcoder
27 tháng 9 lúc 0:00

a) Ta có: \(f'\left( x \right) = 1 - \frac{4}{{{x^2}}}\).

Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 2\left( L \right)\end{array} \right.\)

Ta có \(f\left( 2 \right) = 4\)

Vậy hàm số \(f\left( x \right) = x + \frac{4}{x}\) có giá trị nhỏ nhất bằng \(4\) khi \(x = 2\)

b) Ta có: \(f'\left( x \right) = 3{x^2} - 12\).

Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 2\left( L \right)\end{array} \right.\)

Ta có \(f\left( 2 \right) =  - 15\)

Vậy hàm số \(f\left( x \right) = {x^3} - 12x + 1\) có giá trị nhỏ nhất bằng \( - 15\) khi \(x = 2\)