Tìm giá trị nhỏ nhất: \(\dfrac{2\left|x-1\right|+11}{\left|x-1\right|+7}\)
Tìm x ϵ Z để : a) A = \(\dfrac{x^2-1}{x+2}\) có giá trị nguyên.
b) B = \(\dfrac{\left(x+1\right)^2+\left(x-1\right)^2}{2x^2-1}\) có giá trị nguyên.
c) C = \(\dfrac{2x-3}{3x-2}\) có giá trị nguyên.
d) D = \(\dfrac{x-1}{x^2+1}\) có giá trị nguyên.
3) cho B = \(\dfrac{3x^2-12}{\left(x+3\right)\left(x^2+4x+4\right)}\)
a) tìm đkxđ và rút gọn C
b) với giá trị nào của x khi B = 0
4) cho biểu thức :
C = \(\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\left(\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\right)\)
a) tìm đkxđ và rút gọn C
b) tính giá trị C khi x = 2006
c) Với giá trị nào của x thì C < 0
d) tìm x thuộc giá trị nguyên để \(\dfrac{1}{C}\) thuộc giá trị nguyên
giải phương trình
a.\(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
b.\(x\left(2x-9\right)=3x\left(x-5\right)\)
c.\(3x-15=2x\left(x-5\right)\)
d.\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
e.\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
Bài 1: Tính
\(5x\cdot\left(x^2-3x+\dfrac{1}{5}\right)\\ \left(x-3\right)\cdot\left(2x-1\right)\)
Bài 2: Phân tích đa thức thành nhân tử
\(3x^2-15xy\\ x^2-6x-y^2+9\\ x^2+3x+2\)
Bài 3: Cho biểu thức: B = \(\dfrac{5}{x}-\dfrac{2}{x-1}+\dfrac{2}{x^2-x}\)
a. Tìm điều kiện của x để biểu thức B được xác định
b. Rút gọn biểu thức B
c. Tính giá trị của biểu thức B khi x = \(\dfrac{3}{5}\)
Bài 4: Tìm giá trị nhỏ nhất của biểu thức: Q = \(\dfrac{2x^2-4x+5}{x^2+1}\)
A=\(\dfrac{4x^2+\left(2x+3\right)\left(x+1\right)-9}{9x^2-4}\)
a) Rút gọn A
b) Tìm các số nguyên x để A đạt giá trị nguyên
tìm giá trị nhỏ nhất
\(x^2+3+\dfrac{1}{x^2+1}\)
Tính
a)\(\left(\dfrac{\left(x-1\right)^2}{\left(3x+x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{x^2+x}{x^2+1}\)
b)\(\left(\dfrac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\dfrac{2x^2-x+10}{2\left(x^3+x^2+x+1\right)}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{2\left(x-1\right)}\right).\dfrac{2}{x-1}\)
c)\(\left(\dfrac{x^2}{x^2-5x+6}+\dfrac{x^2}{x^2-3x+2}\right):\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
Cho \(M=\left[\dfrac{\left(x-1\right)^2}{3x+\left(x+1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{2x}{x^3+x}\)
a, Rút gọn biểu thức M
b, Tìm giá trị của x để M đạt GTNN