Bài 1: Cm giá trị của biểu thức sau không phụ thuộc vào biến x:
a) \(\left(2x+3\right).\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
b)\(\left(x+3\right)^3+\left(x+9\right).\left(x^2+27\right)\)
c)\(\left(x+y\right).\left(x^2-xy+y^2\right)+\left(x-y\right).\left(x^2+xy+y^2\right)-2x^3\)
Bài 2: Tìm x biết:
a) \(\left(x+2\right)^2-9=0\)
b) \(\left(x+2\right)^2-x^2+4=0\)
c) \(\left(x-3\right)^2-4=0\)
d) \(x^2-2x=24\)
e) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
Chứng minh biểu thức sau không phụ thuộc vào biến.
\(1,\left(2x+3\right).\left(4x^2-6x+9\right)-2.\left(4x^3-1\right)\)
\(2,\left(4x-1\right)^3-\left(4x-3\right).\left(16x^2+3\right)\)
\(3,\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x+1\right).\left(x-1\right)\)
1) Tìm x biết,
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
2) Rút gọn các biểu thức
a) \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
b) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
c) \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
d) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
e) \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
3) Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến
a) \(9x^2-6x+2\)
b) \(x^2+x+1\)
c) \(2x^2+2x+1\)
4) Tìm GTNN của các biểu thức
a) A=\(x^2-3x+5\)
b) B=\(\left(2x-1\right)^2+\left(x+2\right)^2\)
GIÚP MK VỚI!!!!!!!!!!
Tìm giá trị lớn nhất của biểu thức :
\(-x^2+4x+y^2-12y+47\)
\(-3x\left(x+3\right)-7\)
\(-x^2+2xy-4y^2+2x+10y-8\)
Bài 1 :Tìm x,y ,biết :
a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)
b) \(5x^2+4xy+4y^2+4x+1=0\)
Bài 2 : Chứng minh rằng các biểu thức sau không phụ thuộc vào các biến x,y:
D = \(\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
bài 1: Tìm GTNN của các biểu thức sau:
a) \(A=x^{2^{ }}-3x+4\)
b) \(B=2x^2-4x+1\)
c) \(C=4x^{2^{ }}-4x\)
Bài 2: Tìm GTLN của các biểu thức sau:
a) \(A=-x-4x+2\)
b) \(B=\left(x+4\right)\left(2-x\right)\)
Bài 3: Tính giá trị của các biểu thức sau:
a) \(A=9x^2+42x+49\) với \(x=1\)
b) \(B=\left(x+y\right)^3-x^{2^{ }}+2xy-y^2\) với \(x-y=-5\)
1. Rút gọn, tính giá trị biểu thức :
\(\left(a^3+3\right)\left(a^2-3a+9\right)-a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)\) tại \(a=2017^{2018}\)
2. Tìm x, biết :
a ) \(x\left(x+3\right)-x^2-11=0\)
b ) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
3. Chứng minh rằng
a ) \(\left(x+y\right)^2-\left(x+y\right)^2=-4xy\)
b ) \(\left(7n-2\right)^2-\left(2n-7\right)^2\) luôn luôn chia hết cho 9, với mọi n nguyên.
4.
a ) Chứng tỏ rằng \(x^2-4x+2017>0\) với mọi x
b ) Tìm giá trị nhỏ nhất của biểu thức :
\(Q=x^2-6x-11\)
Chứng minh giá trị biểu thức không phụ thuộc x :
1, \(\left(2x+1\right)^3-\left(2x-1\right)^3-2\cdot\left(4x+3\right)^2+8\cdot\left(x+3\right)^2\)
2,\(\left(2x+1\right)^2\cdot\left(x-1\right)-2\cdot\left(x-2\right)^3+x\cdot\left(3-2x\right)\cdot\left(3+x\right)-\left(3x-3\right)^2\)
tìm gtln của các biểu thức sau
a)A=-x^2+1/2
b)B=4x-x^2
c)C=-2x^2+x
d)D=4/3x-2x^2-1
e)E=4xy+4y+2x-2x^2-4x^2-6