\(A=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
Dấu "=" xảy ra khi: \(2\le x\le5\)
\(B=\left|x-2016\right|+\left|x-1\right|=\left|x-2016\right|+\left|1-x\right|\ge\left|x-2016+1-x\right|=2015\)Dấu "=" xảy ra khi: \(1\le x\le2016\)
\(B=\left|x-2016\right|+\left|x-1\right|\)
\(\Leftrightarrow B=\left|x-2016\right|+\left|1-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(B=\left|x-2016\right|+\left|1-x\right|\ge\left|x-2016+1-x\right|=\left|-2015\right|=2015\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2016\ge0\\1-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2016\\x\le1\end{matrix}\right.\) \(\Rightarrow2016\le x\le1\)
Vậy GTNN của \(B=2015\) khi \(2016\le x\le1\)
\(A=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
Dấu "=" xảy ra khi: \(2\le x\le5\)
\(B=\left|x-2016\right|+\left|x-1\right|=\left|x-2016\right|+\left|1-x\right|\ge\left|x- 2016+1-x\right|=2015\)
Dấu "=" xảy ra khi: \(1\le x\le2016\)