\(Q=x^2-2x+2y^2+4y+8\)
\(=\left(x^2-2x+1\right)+2\left(y^2+2y+1\right)+5\)
\(=\left(x-1\right)^2+2\left(y+1\right)^2+5\)
Ta có : \(\left(x-1\right)^2\ge0;2\left(y+1\right)^2\ge0\) với mọi x,y
\(\Rightarrow\left(x+1\right)^2+2\left(y+1\right)^2+5\ge5\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)
Vậy \(Max_E=5\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)