Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Tìm x, y, z thỏa mãn đẳng thức sau: (x - z)2 + (y - z)2 + y2 + z2 = 2xy - 2yz + 6z + 9
Cho x, y, z là các số thưc thỏa mãn: \(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)
Tìm giá trị biểu thức A= \(x^{2018}+y^{2018}+z^{2018}\)
Cho 3 số x, y, z thỏa mãn : x2 + y2 + z2 = 2020. Tìm giá trị nhỏ nhất cảu biểu thức : M = 2xy - yz - zx + 1
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị biểu thức:
A=\(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho x,y,z là các số khác không và đôi một khác nhau thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) Tính giá trị biểu thức A=\(\dfrac{yz}{x^{2^{ }}+2yz}+\dfrac{xz}{y^{2^{ }}+2xz}+\dfrac{xy}{z^{2^{ }}+2xy}\)
Tìm giá trị nhỏ nhất của biểu thức: \(A=x^2+2y^2+2xy+2x-4y+2028\)
Cho x, y, z khác 0 đôi một khác nhau thỏa mãn \(\dfrac{21}{4x}+\dfrac{21}{4y}+\dfrac{21}{4z}=0\)
Tính giá trị biểu thức \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)