cho các số dương x và y thỏa mãn \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của biểu thức A=x+y
Cho biểu thức A=(x+1/x-1 + 4/x-1 - x-1/x+1):x^2-4x+4/x^+x. Tìm giá trị nhỏ nhất của A?
Tìm giá trị nhỏ nhất của biểu thức:
B= \(\dfrac{2x^{2^{ }}-12x+25}{x^{2^{ }}-6x+12}\)
cho biểu thức:
A=(\(\dfrac{2+x}{2-x}\)-\(\dfrac{2-x}{2+x}\)-\(\dfrac{4}{x-2}\).\(\dfrac{x^2}{x+2}\)) : \(\dfrac{x-1}{2x-x^2}\)
a) Hãy tìm điều kiện của x để giá trị của biểu thức được xác định?
b) Rút gọn biểu thức?
Tìm giá trị lớn nhất , nhỏ nhất của biểu thức sau:
A=\(\dfrac{x^2+1}{x^2+x+1}\)
tìm giá trị nguyên của biến x để giá trị tương ứng của biểu thức sau cũng là 1 số nguyên:
A=\(\dfrac{x^2-x^2+2}{x+1}\)
cho biểu thức A=\(\dfrac{x-1}{x^2-x+1}-\dfrac{1}{x+1}-\dfrac{3x}{x^3+1}\)
1)Tìm giá trị nhỏ nhất của A
giúp mk vs
cho biểu thức P=\(\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)
a.với đkxđ của P:x\(\ne\pm1;\)x\(\ne\pm3\). hãy rút gọn biểu thức P
b.tính giá trị của biểu thức P biết x^2-9=0
c.tìm các giá trị nguyên của x để P nhận giá trị nguyên