\(A=\dfrac{x^2+2x+3}{x^2+2}\)
\(\Leftrightarrow Ax^2+2A=x^2+2x+3\)
\(\Leftrightarrow Ax^2+2A-x^2-2x-3=0\)
\(\Leftrightarrow x^2\left(A-1\right)+\left(-2\right)x+\left(2A-3\right)=0\)
Để PT trên có nghiệm thì
\(\Delta=4-4\left(2A-3\right)\left(A-1\right)=1-\left(2A^2-5A+3\right)\)
\(=-2A^2+5A-2=\left(2-A\right)\left(2A-1\right)\ge0\)\(\Rightarrow\dfrac{1}{2}\le A\le2\)
A đạt min là \(\dfrac{1}{2}\) khi \(-\dfrac{1}{2}x^2-2x-2=0\Rightarrow x=-2\)
A đặt max là \(2\) khi \(x^2-2x+1=0\Rightarrow x=1\)