Để X^2+15/ X^2 + 3 đạt GTLN
Biểu thức đạt GTLN khi X^2 + 3 đạt giá trị dương nhỏ nhất
\(x^2\ge0\Leftrightarrow x^2+3\ge0+3=3\)
=>GTNN của mẫu là 3 khi đó x2=0 <=>x=0
=>Giá trị của tử khi x=0 là \(0^2+15=15\)
=>GTLN của biểu thức là:\(\frac{15}{3}=5\Leftrightarrow x=0\)
\(\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có
\(x^2\ge0\) với mọi x
\(\Rightarrow x^2+3\ge3>0\)
\(\Rightarrow\frac{1}{x^2+3}\ge\frac{1}{3}\)
\(\Rightarrow\frac{12}{x^2+3}\ge4\)
\(\Rightarrow1+\frac{12}{x^2+1}\ge5\)
Dấu " = " xảy ra khi x=0
Vậy biểu thức đạt giá trị nhỏ nhất là 5 khi x=0