Ta có: \(A=3-x^2+2x-4y^2-12y\)
\(A=-\left(x^2-2x+1\right)-\left(4y^2+12y+9\right)+13\)
\(A=-\left(x-1\right)^2-\left(2y+3\right)^2+13\)
\(A=-\left[\left(x-1\right)^2+\left(2y+3\right)^2\right]+13\)
Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(2y+3\right)^2\ge0\forall y\)
=> \(\left(x-1\right)^2+\left(2y+3\right)^2\ge0\forall x;y\)
=> \(-\left[\left(x-1\right)^2+\left(2y+3\right)^2\right]\le0\forall x;y\)
=> \(-\left[\left(x-1\right)^2+\left(2y+3\right)^2\right]+13\le13\forall x;y\)
=> \(A\le13\forall x;y\)
Dấu "=" xảy ra khi x=1; y=-3/2
Vậy GTLN của A là 13 khi x=1; y=-3/2