ĐKXĐ: \(\left\{{}\begin{matrix}2x-1\ge0\\x+2>0\\3-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x>-2\\x\le3\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{2}\le x\le3\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x-1\ge0\\x+2>0\\3-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x>-2\\x\le3\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{2}\le x\le3\)
Tìm đkxđ của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\) - \(\sqrt[3]{2x-1}\)
Tìm đkxđ của các biểu thức:
a) \(\sqrt{\dfrac{2x-5}{x+2}}\)
b) \(\sqrt{2-x^2}\)
c)\(\sqrt{1-\sqrt{x-1}}\)
Cho biểu thức:
A=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Tìm ĐKXĐ và rút gọn A
b) Tính giá trị của A khi x=\(3-2\sqrt{2}\)
Cho P = (\(\dfrac{1}{\sqrt{x}-1 }\) - \(\dfrac{1}{\sqrt{x}}\))(\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\))
a. Tìm đkxđ và rút gọn P
b. Tìm x để P = \(\dfrac{1}{4}\)
cho biểu thức P=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\) với x\(\ge\)0; x\(\ne\)9
1.tìm ĐKXĐ và rút gọn P
2.tính P khi x=7+2\(\sqrt{3}\)
3.tìm x để P<1
Cho M=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)
a)Tìm ĐKXĐ
b)Rút gọn
c)Tìm x để M<0
Cho P = (\(\dfrac{\sqrt{x}}{\sqrt{x}-1 }\) - \(\dfrac{1}{x-\sqrt{x}}\))(\(\dfrac{1}{1+\sqrt{x}}\) + \(\dfrac{2}{x-1}\))
a. Tìm đkxđ và rút gọn P
b. Tìm x để P>0
M=\(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{x-4}\)tìm ĐKXĐ
Cho biểu thức
P =\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
a) Tìm ĐKXĐ và rút gọn P
b) Tìm các giá trị của x để P>0
c) Tìm x để P =6