ĐK: \(\sqrt[3]{x^2-3x+2}\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\sqrt[3]{\dfrac{x^2-3x+2}{x+2}}\ge\dfrac{1}{2x^2+1}\)
mà \(\dfrac{1}{2x^2+1}>0\forall x\) nên \(\sqrt[3]{\dfrac{x^2-3x+2}{x+2}}>0\)
\(\Rightarrow\left(x^2-3x+2\right)\left(x+2\right)>0\)
\(\Leftrightarrow x^3-x^2-4x+4>0\)
\(\Rightarrow\left[{}\begin{matrix}-2< x< 1\\x>2\end{matrix}\right.\)
Vậy đk là \(\left[{}\begin{matrix}-2< x< 1\\x>2\end{matrix}\right.\)