Bài 1: Tính đơn điệu của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tìm điểm cực trị của mỗi hàm số sau:

a) y = 2x+ 3x2 – 36x – 10;                b) y = – x4 – 2x2 + 9;                    c) y = x + \(\dfrac{1}{x}\).

datcoder
24 tháng 9 lúc 14:02

a) Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = 6{x^2} + 6x - 36\).

Nhận xét \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 3\end{array} \right.\).

Ta có bảng biến thiên sau:

Vậy hàm số đạt cực đại tại điểm \(x =  - 3\) và đạt cực tiểu tại \(x = 2\).

b) Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = -{4x^3} - 4x\).

Nhận xét \(y' = 0 \Leftrightarrow x = 0\).

Ta có bảng biến thiên sau:

Vậy hàm số đạt cực tiểu tại \(x = 0\).

c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

Ta có: \(y' = 1 - \frac{1}{{{x^2}}}\).

Nhận xét: \(y' = 0 \Leftrightarrow 1 - \frac{1}{{{x^2}}} = 0 \Leftrightarrow x =  \pm 1\).

Ta có bảng biến thiên sau:

Vậy hàm số đạt cực đại tại x = -1 và đạt cực tiểu tại x = 1.