1. Cho f(x) và g(x) có đạo hàm trên R. Tính đạo hàm của
a, y=f(x3)-g(x2)
b, y=\(\sqrt{f^3\left(x\right)+g^3\left(x\right)}\)
2. Cho f(x)=\(\dfrac{m-1}{4}\)x4 + \(\dfrac{m-2}{3}\)x3-mx2+3x-1. Giải và biện luận pt: f'(x)=0
Cho hai hàm số \(f\left(x\right)=\tan x\) và \(g\left(x\right)=\dfrac{1}{1-x}\). Tính \(\dfrac{f'\left(0\right)}{g'\left(0\right)}\) ?
Tìm đạo hàm của các hàm số sau :
a) \(y=\dfrac{x^3}{3}-\dfrac{x^2}{2}+x-5\)
b) \(y=\dfrac{2}{x}-\dfrac{4}{x^2}+\dfrac{5}{x^3}-\dfrac{6}{7x^4}\)
c) \(y=\dfrac{3x^2-6x+7}{4x}\)
d) \(y=\left(\dfrac{2}{x}+3x\right)\left(\sqrt{3}-1\right)\)
e) \(y=\dfrac{1+\sqrt{x}}{1-\sqrt{x}}\)
f) \(y=\dfrac{-x^2+7x+5}{x^2-3x}\)
Cho các hàm số :
\(f\left(x\right)=x^3+bx^2+cx+d\) (C)
\(g\left(x\right)=x^2-3x-1\)
a) Xác định b, c, d sao cho đồ thị (C) đi qua các điểm \(\left(1;-3\right);\left(-1;-3\right);f'\left(\dfrac{1}{3}\right)=\dfrac{5}{3}\)
b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ \(x_o=1\)
c) Giải phương trình \(f"\left(\cos t\right)=g'\left(\sin t\right)\)
d) Tìm giới hạn \(\lim\limits_{z\rightarrow0}\dfrac{f"\left(\sin5z\right)+2}{g'\left(\sin3z\right)+3}\)
Giải phương trình \(f'\left(x\right)=g\left(x\right)\) biết :
a) \(f\left(x\right)=\dfrac{1-\cos3x}{3};g\left(x\right)=\left(\cos6x-1\right)\cot3x\)
b) \(f\left(x\right)=\dfrac{1}{2}\cos2x;g\left(x\right)=1-\left(\cos3x+\sin3x\right)^2\)
c) \(f\left(x\right)=\dfrac{1}{2}\sin2x+5\cos x;g\left(x\right)=3\sin^2x+\dfrac{3}{1+\tan^2x}\)
Cho hàm số f(x) có đạo hàm trên R và thỏa mãn \(f^3\left(2-x\right)-2f^2\left(2+3x\right)+2021x=0,\forall x\in R.\) Tính giá trị của biểu thức \(T=5f\left(2\right)+36f'\left(2\right)\) .
Cho hàm số \(f\left(x\right)=\sqrt{1+x}\)
Tính \(f\left(3\right)+\left(x-3\right)f'\left(3\right)\) ?
\(y=\dfrac{1}{\left(x^2-2x+5\right)^2}\)
y=2sin3xcos5x
\(y=\left(1+\sqrt{1-2x}\right)^3\)
\(y=x^2\sin\left(3x-1\right)\)
\(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
Tìm đạo hàm của các hàm số sau :
a) \(y=x\cot^2x\)
b) \(y=\dfrac{\sin\sqrt{x}}{\cos3x}\)
c) \(y=\left(\sin2x+8\right)^3\)
d) \(y=\left(2x^3-5\right)\tan x\)