Bài 6: Ôn tập chương Đạo hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Lee

1. Cho f(x) và g(x) có đạo hàm trên R. Tính đạo hàm của

a, y=f(x3)-g(x2)

b, y=\(\sqrt{f^3\left(x\right)+g^3\left(x\right)}\)

2. Cho f(x)=\(\dfrac{m-1}{4}\)x\(\dfrac{m-2}{3}\)x3-mx2+3x-1. Giải và biện luận pt: f'(x)=0

Nguyễn Việt Lâm
4 tháng 4 2021 lúc 17:50

1a.

\(y'=3x^2.f'\left(x^3\right)-2x.g'\left(x^2\right)\)

b.

\(y'=\dfrac{3f^2\left(x\right).f'\left(x\right)+3g^2\left(x\right).g'\left(x\right)}{2\sqrt{f^3\left(x\right)+g^3\left(x\right)}}\)

2.

\(f'\left(x\right)=\left(m-1\right)x^3+\left(m-2\right)x^2-2mx+3=0\)

Để ý rằng tổng hệ số của vế trái bằng 1 nên pt luôn có nghiệm \(x=1\), sử dụng lược đồ Hooc-ne ta phân tích được:

\(\Leftrightarrow\left(x-1\right)\left[\left(m-1\right)x^2+\left(2m-3\right)x-3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(m-1\right)x^2+\left(2m-3\right)x-3=0\left(1\right)\end{matrix}\right.\)

Xét (1), với \(m=1\Rightarrow x=-3\)

- Với \(m\ne1\Rightarrow\Delta=\left(2m-3\right)^2+12\left(m-1\right)=4m^2-3\)

Nếu \(\left|m\right|< \dfrac{\sqrt{3}}{2}\Rightarrow\) (1) vô nghiệm \(\Rightarrow f'\left(x\right)=0\) có đúng 1 nghiệm

Nếu \(\left|m\right|>\dfrac{\sqrt{3}}{2}\Rightarrow\left(1\right)\) có 2 nghiệm \(\Rightarrow f'\left(x\right)=0\) có 3 nghiệm


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
huỳnh hải dương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lan Kiều
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết