theo định lí Bơ du ta có
f(x)=f(1)=1\(^{80}\)+\(1^{40}+1^{20}+1^{10}+1^5+1\)=6
Vậy số dư trong phép chia trên là 6
theo định lí Bơ du ta có
f(x)=f(1)=1\(^{80}\)+\(1^{40}+1^{20}+1^{10}+1^5+1\)=6
Vậy số dư trong phép chia trên là 6
Tìm dư của phép chia đa thức f(x) cho (x2 +1) (x-2) biết f(x) (chia x-2) dư 7 và f(x) : (x2 +1) dư 3x+5
Đa thức f(x) khi chia cho x−2 thì dư 5, khi chia cho x−3 thì dư 7, khi chia cho (x−2)(x−3) thì được thương là x2 − 1 và còn dư. Tìm đa thức f(x).
Nhanh lên mọi người mik cần gấp !!!!
Tìm dư của phép chia đa thức (x+1)(x+3)(x+5)(x+7)+2015 cho đa thức x2 + 8x +10
tìm đa thức p(x) biết p(x) khi chia cho x-2 dư 2;chia cho x+2 dư -2; chia cho x^2-1 được thương là x và còn dư
Cho hai đa thức :
\(A=3x^4+x^3+6x-5\)
\(B=x^2+1\)
Tìm dư R trong phép chia A cho B rồi viết A dưới dạng A = B.Q + R
thực hiện phép chia và tìm x để số dư bằng 0
a)(x^3-x^2-14x+24):(x^3+x-12)
b)(x^5+4x^3+3x^2-5x+15);(x^3-x+3)
c)(2x^4+2^3+3x^2-5x-20):(x^2+x+4)
d)(2x^4-14x^3+19x^2-20x+9):(x^2-4x+1)
giúp mk gấp vs ah!!!!!!
Không làm phép chia, hãy tìm dư trong phép chia đa thức: x9+x6+x3+1 cho da thuc x2+x+1
Tìm phần dư trong phép chia đa thức 1 + x + x19 + x199 + x1995 cho 1 − x2
Nhanh lên mọi người mik cần gấp.
Tìm dư của phép chia đa thức f(x) cho đa thức q(x) trong mỗi trường hợp sau :
a, f(x) = x+x3+x9+x27+x243 ; q(x) = x-1
b, f(x) = 1+x+x19+x199+x1995 ; q(x) = 1-x2
c, f(x) = (x+1)(x+3)(x+5)(x+7)+2003 ; q(x) = x2+8x+12