Cho 2016 số thực: \(a_1,a_2,a_3,..........a_{2016}\) thỏa mãn: \(a_1^2+a_2^2+a_3^2+...........+a_{2016}^2=1008\).CM: \(\left|\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{2}+...........+\dfrac{a_{2016}}{2016}\right|< \sqrt{2016}\)
Tồn tại hay không tồn tại 2019 số \(a_1,a_2,a_3,...,a_{2019}\) nguyên lẻ thoả mãn đẳng thức: \(a_1^2+a_2^2+a_3^2+...+a_{2018}^2=a_{2019}^2\)
cho 100 số tự nhiên \(a_1,a_2,a_3,...,a_{100}\) thỏa mãn : \(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\dfrac{1}{\sqrt{a_3}}+...+\dfrac{1}{\sqrt{a_{100}}}=19\)
CMR trong 100 số đó tồn tại 2 số bằng nhau .
a, Tồn tại hay không 2019 số nguyên lẻ \(a_1,a_2,a_3,...,a_{2019}\)thỏa mãn:
\(a_1^2+a_2^2+a_3^2+...+a_{2018}^2=a_{2019}^2\)
b, Tìm cặp số nguyên x,y thỏa mãn:
\(5x^2+5y^2+8xy+2y-2x+2=0\)
Cho \(a_1,a_2,a_3,...,a_{2n}\left(n\ge2\right)\) là các số thực thỏa mãn : \(\sum\limits^{2n-1}_{i=1}\left(a_i-a_{i+1}\right)^2=1\)
Tìm GTLN của biểu thức sau : \(\left(a_{n+1}+a_{n+2}+...+a_{2n}\right)-\left(a_1+a_2+...+a_n\right)\)
Cho các số nguyên dương: \(a_1;a_2;a_3;...;a_{2017}\)sao cho :
\(N=a_1+a_2+a_3+...+a_{2017}\)chia hết cho 30.
Chứng minh: \(M=a^5_1+a^5_2+a^5_3+...+a^5_{2017}\)chia hết cho 30.
Cho 2012 số nguyên dương \(a_1,a_2,a_3,...,a_{2012}\) thỏa mãn:
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{2012}}}=125\)
Chứng minh: Trong 2012 số trên tồn tại ít nhất 3 số bằng nhau
Cho 10 số nguyên dương \(a_1,a_2,a_3,...,a_{10}\) thoả mãn điều kiện: \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_n}=\dfrac{11}{2}\). Chứng minh rằng có ít nhất 2 trong 10 số nguyên dương trên bằng nhau
cho \(f\left(x\right)=\left(x^2+5x-8\right)^{1000}.x^9\)
Giả sử sau khi triển khai f(x) có dạng:
\(f\left(x\right)=a_{2009}X^{2009}+a_{2008}X^{2008}+...+a_2X^2+a_1X+a\)
Hãy tính :
a) \(S_1=a_1+a_3+...+a_{2007}+a_{2009}\)
b) \(S_2=a_0+a_2+...+a_{2006}+a_{2008}\)
c) \(S_3=a_0+a_1+a_2+...+a_{2008}+a_{2009}\)
c